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Abstract

This paper addresses the problem of “H., almost synchronization” for homogeneous networks of general linear agents subject to external
disturbances and under directional communication links. Agents are presumed to be non-introspective; i.e. agents are not aware of their own
states or outputs, and the only available information for each agent is a network measurement that is a linear combination of relative outputs.
Under a certain set of conditions, a family of dynamic protocols is developed such that the impact of disturbances on the synchronization error
dynamics, expressed in terms of the H., norm of the corresponding closed-loop transfer function, is reduced to any arbitrarily small value.
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1 Introduction

The problem of synchronization in networks of dynamic sys-
tems has attracted enourmous attention in recent years and
possesses numerous applications in areas such as formation
flying, cooperative control, and distributed sensor fusion; see
e.g. (Olfati-Saber et al., 2007) and references therein. The
objective of synchronization in multi-agent systems is to find
a distributed algorithm to reach an agreement on a certain
quantity of interest which depends on the state of agents.

The seminal works of (Wu & Chua, 1995a) and (Wu &
Chua, 1995b) have substantially contributed in analysis and
design of multi-agent systems by introducing the application
of the graph theory and the Kronecker product. Moreover,
the works of Jadbabaie et al. (2003); Olfati-Saber & Mur-
ray (2004); Fax & Murray (2004); Moreau (2005), and Ren
& Beard (2005) have been instrumental in paving the way
that synchronization protocols have been developed. Also, Li
et al. (2010) extended conventional observers to distributed
observers with the aid of allowing agents to exchange their
protocol’s states. A thorough coverage of earlier work, in-
cluding static and dynamic protocols, the effect of commu-
nication delay, and dynamic interaction topologies may be
found in (Wu, 2007), (Ren & Cao, 2011), and (Cao et al.,
2013) and references therein. A recent research on output
synchronization of heterogeneous networks was presented
by Grip et al. (2012).
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1.1  The Topic of This Paper

In (Peymani et al., 2014), we introduced the notion of H..
almost synchronization?, in which the impact of external
disturbances on the disagreement dynamics is attenuated to
any arbitrarily small value in the sense of the H., norm of
the closed-loop transfer function. Hence, synchronization
can be achieved with any degree of accuracy. The work of
Peymani et al. (2014) was concerned with heterogeneous
networks of introspective agents; i.e. the dynamics of agents
are non-identical, and agents have partial knowledge about
their own states in addition to network measurements, which
are based on relative information.

In this article, the problem of H. almost synchronization
is solved for homogeneous networks of non-introspective
agents; i.e. the network consists of identical agents which
are not allowed to access their own states or outputs, and
the only available measurement given to each agent is a
linear combination of the output of the agent relative to that
of its own neighbors. A practical motivation is a swarm of
autonomous underwater vehicles which do not measure their
absolute positions, but can exchange their relative distances.

We stress the fact that lack of self-measurements does not
allow us to shape the agents into the desired dynamics, as
proposed by Peymani et al. (2014). Hence, we are confronted
with general linear systems, where the finite and infinite zero
structures as well as invertibility properties are explicitly
exploited in order to achieve H., almost synchronization.

2 Historically, the term “almost” has been applied to the problem
of finding families of controllers that can reduce noise sensitivity to
any arbitrary level; see e.g. (Ozcetin et al., 1992) where the problem
of almost disturbance decoupling was addressed.
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Our design method is based on the time-scale structure
assignment technique (Ozcetin et al., 1992) rooted in the
methodology of singular perturbation (Kokotovic et al.,
1986). We propose a novel time-scale structure assignment
technique where infinite zero dynamics of different orders
are scaled with different time-scales. The motivation for
such a time-scale assignment is to make the design robust
with respect to the multiplicative uncertainty arising from
the interaction topology.

1.2 Other Related Work

Although synchronization of multi-agent systems has been
vastly studied in ideal conditions, relatively few references
concern synchronization in the presence of disturbances.
They mainly focus on homogeneous multi-agent systems
and utilize linear matrix inequalities to solve the H. opti-
mization problem over a network. Some only analyze the
disturbance attenuation properties of consensus protocols
and do not present a specific design procedure to solve the
problem of disturbance rejection in multi-agent systems.

Under bidirectional communication links, according to (Li
et al., 2010), the distributed H. control problem to achieve
a desired H.. gain for the transfer function from disturbance
to each agent’s output is converted to the H. control prob-
lem of a set of independent systems. Using the pinning idea,
which implies a subset of agents have access to its own
states, Li et al. (2011b) introduced the notions of H,/H.,
performance regions, and proposed a static protocol that as-
sured an unbounded H.. performance region. The works of
Li et al. (2010, 2011b) did not explore disturbance attenua-
tion from synchronization error dynamics. Shen et al. (2011)
introduced the notion of the bounded H.. synchronization,
and Wang et al. (2013) defined the H.. performance over a
finite horizon for a class of discrete time-varying multi-agent
systems subject to missing measurements and parameter un-
certainties. For complete and circulant networks, Massioni
& Verhaegen (2009) proposed a decomposition approach to
solve the distributed H.. control problem for homogenous
multi-agent systems. For networks of non-introspective inte-
grators and introspective linear systems with full-state cou-
pling, Mo & Jia (2011) and Liu & Jia (2011) presented static
controllers to solve the H. control problem over a network.

For directed networks of first-order integrator systems, Lin
et al. (2008) proposed static H., controllers; extensions to
networks of introspective high-order multi-agent systems
were given in (Lin & Jia, 2010; Liu & Jia, 2010). For net-
works of introspective single-integrators, Hong-Yong et al.
(2011) proposed a consensus protocol by designing an ob-
server for disturbances generated by an exosystem. Consid-
ering networks of non-introspective agents possessing Lip-
schitz nonlinear dynamics and exchanging full-state infor-
mation according to communication topologies described by
strongly connected and balanced directed graphs, Li et al.
(2012) proposed a static protocol, which guaranteed a de-
sired H., performance. Moreover, Shen et al. (2010) and

Ugrinovskii (2011) studied the topic of H.. distributed con-
sensus filtering.

Besides LMI-based H.. consensus protocols, the following
articles investigate disturbance attenuation properties of con-
sensus protocols. The notion of leader-to-formation stabil-
ity (Tanner et al., 2004) was proposed to assess robustness
of followers with respect to the leader’s input for nonlin-
ear agents. Li & Zhang (2009) solved unbiased mean-square
average-consensus by introducing time-varying consensus
gains. For first-order dynamical systems under bidirectional
links where measurements are corrupted by bounded noise,
Bauso et al. (2009) proposed a static controller which guar-
anteed convergence of all states to a cylinder. Using non-
smooth finite-time consensus algorithms for networks of
double-integrators, Li et al. (2011a) and Du et al. (2012) pro-
vided an analysis for disturbance attenuation property of the
closed-loop system in the presence of external disturbances.

Hence, one observes a distinct lack of systematic approaches
to design synchronization protocols for networks of non-
introspective, general linear systems, coupled through par-
tial state information and under directional communication
links, which are capable of synchronizing the agents with
arbitrary accuracy in the presence of external disturbances;
this article aims to fill this gap.

1.3 Notations

Throughout the paper, matrix A is represented by A = [a;;]
where the element (i,j) of A is shown by a;;. KerA and
ImA denote respectively the kernel and the image of A. The
Kronecker product of matrices A = [g;;] and B = [b;;] is
defined as A ® B = [q;;B]. Let ||A|| denote the induced 2-
norm. A block diagonal matrix constructed by A;’s is shown
by diag{A;} fori=1,--- ,n. Also, stack{A;} fori=1,--- ,n
indicates [AT,AT,--- AT]T, and x = col {x;} fori=1,--- ,n
is adopted to denote x = [x],- - ,x}|T where x;’s are vectors.
The identity matrix of order n is symbolized by I,,. Let 1, €
R" be the vector with all entries equal to one. The real
part of a complex number A is represented by Re{A}. The
open left-half and the open right-half complex planes are
represented by C~ and C*, respectively. The H., norm of a
transfer function 7T'(s) is denoted ||7(s)||«. For a space ¥/,
the orthogonal complement is shown by 7.

2 Homogeneous Multi-Agent Systems

A homogeneous multi-agent system is referred to a network
of identical multi-input multi-output agents described by

Agenti: X; = Ax; + Bu; + Gw;, y; = Cx; (1a)
in which i € & £ {1,--- ,N}. Also, x; € R" is the state,
u; € R™ is the control, y; € R? is the output, w; € R? :
lim; e zir f_TT W;FW,' dr < oo is the external disturbance.
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The network’s communication topology, based on which
agents exchange information, is described by a directed
graph ¢ whose nodes correspond with agents in the net-
work. If an edge exists from node k to node i, a positive
real weight a;; is given to the edge. We assume that no self
loops are allowed; i.e. a; = 0. The graph ¢ is associated
with the Laplacian matrix G = [g;] where gy = —ay for
i,k €6, i#kand gi =Y i It follows that 2 =0
is an eigenvalue of G with a right eigenvector 1y. Thus, the
network measurement given to agent i € G is:

¢i= ZkN:1 ai(yi —yr) = Z;vzl 8ikCX (1b)

In addition, it is assumed that agents are capable of exchang-
ing additional information over the network. The transmis-
sion of this additional information conforms with the net-
work’s communication topology and facilitates the design
of a distributed observer for the network. Thus, agent i has
access to the following quantity:

Ei=Y0  gam (o)

where 7, € R” depends on the state of the protocol of agent
k € G; it will be clarified later when a dynamic protocol is
introduced. Agents are non-introspective and no self mea-
surements are available; in other words, agent i does not
have access to its own states X; or the output y;. Thus, the
only information available to agent i is the network measure-
ment § ;» which is based on relative information, and neither
X; nor y; is measured.

3 H.. Almost Synchronization

We define the following vectors which are formed by stack-
ing the corresponding vectors of each agent:

§ £ col{¢;} 2)

for i € G. Let the mutual disagreement be defined as:

w = col {w;},

ei.kéYi_ka for ivk€67 i>k (3)
The stacking column vector of all mutual disagreements is
denoted e. Obviously, synchronization is achieved if e = 0.
We define the following transfer function with the appropri-
ate dimension: e = T, (s)w. The problem that we cope with
is precisely stated in Problem 1.

Problem 1 Consider a multi-agent system as described by
(1) with a communication topology 4. Given a set of net-
work graphs 9* and any y > 0, the “ Hw. almost synchroniza-
tion” problem is to find, if possible, a linear time-invariant
dynamic protocol such that, for any 4 € G*, the closed-loop
transfer function from w to e satisfies || Tye (5)]| < 7.

For agent i € G, the protocol, whose internal state is denoted
&, € R9 for some integer q > 0, maps §; and ; to w; and

takes the following general form

{éi%(e)@%(e)eol{c,-,&} (4a)
u = %.(e) &+ De(€)col {{;, 8} (4b)

The matrices <7.(€), %.(€), 6.(€), and Z,(€) are parame-
terized in terms of the tuning parameter 0 < € < 1. We will
specify these matrices in the subsequent subsections. We
will find an upper bound for €, say €*, such that for any
€ < g%, we obtain || Ty (s) |l < 7. The controller is contin-
uous in €, and adjustment of € may be carried out online
to obtain the required accuracy of synchronization. Thus, it
turns out to a non-iterative (one-shot) design.

3.1 Preliminaries and Assumptions

The conditions under which the development of the desired
protocols is viable are given using the concepts from the ge-
ometric control theory and in terms of an appropriate set of
network graphs. The geometric control theory and its appli-
cation to exact disturbance decoupling are discussed in the
books of Wonham (1985) and Trentelman et al. (2001). The
application to almost disturbance decoupling is presented by
Weiland & Willems (1989).

Let 7¢..c(A,B,C) be the maximal (A — BF)-invariant sub-
space of R” contained in Ker C such that the eigenvalues of
(A —BF) belong to C™~ for some F. The supremal .Z},-almost
controllability subspace ‘contained’ in KerC is represented
by Zg..c(A,B,C). Let /7 5(A,B,C) denote the minimal
(A — KC)-invariant subspace of R” containing ImB such
that the eigenvalues of (A —KC) belong to C~ for some K.
We define the following subspaces of the state space.

%)Kerc(A,B,C) = 7/K*erC(A’BaC) @%ﬁerC(AvB’C)
yb,ImB(Avac) = (%),KerBT (ATchvBT))l

Assumption 1 We make the following assumptions.

(1) (A,B) is stabilizable, and (C,A) is detectable;

(2) ImG C %,KCIC(A3B7 C)’

(3) bemG(A, G7 C) C Ai/b,KerC (A7 Ba C)’

(4) bemG(A,G,C) C KerC;

(5) The matrix triples (A,B,C) and (A,G,C) have no in-
variant zeros on the imaginary axis.

The geometric subspaces can be computed by virtue of
the special coordinate basis proposed by Sannuti & Saberi
(1987) (reviewed in Appendix A) using available software,
either numerically (Liu et al., 2005) or symbolically (Grip
& Saberi, 2010).

Definition 1 For given 8 > 0 and integer Ny > 1, g is the
set of graphs composed of N nodes where N < Ny such that
every & € 9 has a directed spanning tree, and the eigen-
values of its Laplacian, denoted A; for i = 1,--- N, satisfy
Re{)t,'} > ﬁfor Ai 7& 0. <
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A directed graph ¢ has a directed spanning tree if it has
a node from which there are directed paths to every other
nodes. The Laplacian G associated with 4 € ¢ has a simple
eigenvalue at zero and the rest are located in C*, according
to (Ren & Beard, 2005).

3.2 Protocol Development

To solve Problem 1, we introduce a distributed observer-
based protocol parameterized in terms of a tuning parameter
€ € (0,1] in the form of

% = (A — BFeon (€))% + Kops (€)(; — &) (52)
u;, = _Fcon(g)ﬁi R i€ (5b)

where &X; € R"; éi is given by (lc) where n; = C&;. We
present a step-by-step design procedure for determining the
gains Feon(€) and Kops(€). The algorithm makes use of
the special coordinate basis for multivariable linear systems
(Sannuti & Saberi, 1987); see Appendix A. The design pro-
cedure is given below.

Step 1 Find nonsingular transformations Iy, I'y and I'y in
order to represent the system characterized by the matrix
triple (A,B,C) into the SCB as stated in Appendix A. To
that end, let

x; =Ixxi, yi =Tycol{yai,y.i}, wi=Tucol{ug; uc;} (6)
where x; = col {x;i,in,xbyi,xC_y,-,xd_,,-}, xa;i =col{xjq;},va;=

col{yja;} and uq; = col{ujq;}, Vj € Q= {1,-- ,r}; see
Appendix A. It yields the SCB for agent i € G:

Xy = Ay Xyt Logyai+Lyyni+ Gy Wi (7a)
i = AT+ Lyai+ Liyei+ Gl wi (7b)
Xb,i = Avxb,i + Loayd,; + GoW; (7o)
Xe,i = Acxe,i +Leayd,i + LebYb.i

+ Be(tte,i + EqyXy ; + EcyXa ;) + GeWi (7d)

and for each j € Q, there are:
Xjdi=Ajaxjdi+ Ljaya,i+ Bja(uja;i +Ejx;) +Gjaw; (Te)

In addition, y;q; = CjaXjd,i» ya; = CaXa,i» and yp; = CpXp,;
where Cyq = diag{Cjq} Vj € Q. It is also used that G =
I'ystack{G, , G, Gy, G, Gq} where Gy = stack{Gjq},Vj €
Q, where Gjq € R74;*®_ The dimensions of the variables as
well as the size and the structure of the matrices conform
with the SCB stated in Appendix A. Define the following

matrices
AT LT G LT
3 bt La=| ®)

0 A

A=

Step 2 Select the feedback gain matrices Fj, F,, F. and
Fjq for j=1,---,rsuch that the following matrices become
Hurwitz stable:

Acc = Ac —B.F, Aj‘d = Ajd _Bdejd, Ags = Ag — LyaFs
where F; = [F,", F,]. Since the pairs (Ac,Bc) and (Ajq,Bjq)
are controllable and the pair (Ag,Lyq) is stabilizable under
Assumption 1-(1), the existence of F,', F,, F. and Fjq is
guaranteed. The dimensions of the gains F,", Fy, F; and F, id
are pq X ny, pa X ny, me X ne, and q; X jqj, respectively.
Step 3 For every j=1,---,r, define .§j c RJ4i%idj ag

Sj(e) = diag{l,,,€ly,, - &/ "I, } 9)

where € € (0, 1] is the tuning parameter and will be specified
later. Also, for j=1,---,r, define

Fige = € FjqS; Fye = diag{Fjqe}  (10)
Step 4 Form .7, € R™*" and %4 € R™*" as below.
Fe = [0 00F 00, Fa=Fut+Tae
where Fgq = stack{E;} for j=1,---,r, and
Fae =0 FuClF  FuClFy 0 Fy

Now, find Feon(€) as

Fcon(g) == 1—‘u

Fa |
I (11)
y ‘|

C

Step 5 Find nonsingular transformations I'y, T'y and I'y in
order to represent the system characterized by the matrix
triple (A,G,C) into the SCB as stated in Appendix A. For
simplicity, we keep the notation used in Step 1 unchanged
and place bars on the variables, matrices, and their dimen-

sions. Then choose
Y} . _ W .
y_d”], wi FW[ d”] (12)
Yb,i We,i

where X; = col{X, ;% ;, % i, %, Xq,}. It yields the SCB for
agent i € G:

x; =I%x;, yi=Iy

X = AL X+ LogVai+ Ly Soi+ By wi (13a)
& = AR A L Sai+ Lo+ Bl w; (13b)
Xp,i = ApXp,i + LoaYa,i + Bow; (13c¢)

Xei=Ackci+ LeaVai+ Levib.i
+Ge(wei+ EgX,  + ELX!) + Bew; (13d)

ca’va,i ca’ta,i

Preprint submitted to Automatica
Received February 10, 2014 14:17:45 PST



CONFIDENTIAL. Limited circulation. For review only

and considering that Xq; = col {Xjq;}, ya,; = col {¥;a;}, and
wai=col{wjq;}, Vj € Q= {1, F}, there are:

Xjai=Ajajai+LjabaitGia(wiait+Ej%) +Bjaw;  (13e)

Moreover, yjq; = de idis Ydi = Cdxd, where Cy =
diag{Cjq}, Vj € Q, and 3 ; = Gy, ;. Also, we have used the
following notation: B = I'x stack{B, , B ,Bb,BC,Bd} where
By = stack{Bq}, Vj € Q, where Bjq € R/4*™ The dimen-
sions of the variables and the size and the structure of the
matrices as well as the matrix partitioning conform with the
SCB stated in Appendix A. Define the following matrices

Af 0

_ |, Eg=stack N (14)
GCE(;; A, S {[ ja JC]}

Step 6 Select K, and K. such that

is made Hurwitz stable. Such Igsd exists under Assumption 1-
(2), which implies the pair (As,Eqs) is detectable. Let T €
(0,B], find B, = BT >0 and Pjq = 13;{1 > 0 which solve the
following algebraic Riccati equations:

AvBy + BAL —2tRCLC B, = — 15,
Ajdpjd + deA;["d — 2’L'deé;rdéjdpjd = —Ijqj

for every j € Q. Then, define

K, =RCy, Kjd:deC;rda jeQ

The existence of such A, and P; id follows from the observ-
ability of the pairs (Cy,Ap) and ( ia;A ja). We point out that
K, Ky, K., and K jq have the d1mens10ns of i X P, iy X Po,
ic X pq and jg; x q;, respectively.

Step 7 Define the matrix S; € R/%*/9i, for every j € Q, as

S (z . - 521 1
S.,-(sj):d1ag{Iqj,stqj,~~,£J/. q,ejf Iz} (15)

where &; = 85 Also, for every j € Q, define

Kjoe = &'5;'Kjq Kge = diag{Kja¢ } (16)

Step 8 Form %, € R™/ and #j, € R"*Pd as below:

Hge = stack {0, K GIRqe, 0, K.GIRye, Kae}  (17a)
Jp = stack {0, 0, Ky, 0, 0} (17b)

Let Gy = diag{Gjq}, V,j € Q. Now, obtain Kqps(€) using
Kons(6) =[x | e 45| T (1)

Theorem 1 formalizes the result.

Theorem 1 Under Assumption I and for the set 9g, the pa-
rameterized protocol (5), where Foon (€) is selected as in (11)
and Kops(€) is selected as in (18), solves Problem 1. Pre-
cisely, the following hold

(i) for any given B > 0, there exists an € € (0,1] such
that, for every € € (0,&{|, synchronization is accom-
plished in the absence of disturbance; i.e. Y€ € (0, €]
whenw =0

e,',j:y,-—yj—>0, Vi,jeG,i>j as t—oo

(ii) for any given y > 0, there exists an & € (0,&{] such
that for every € € (0,€&], the closed-loop transfer func-
tion from w to e satisfies || Tye (5)]| < 7.

4 Simulation Result

A homogeneous network of four non-introspective agents is
considered as depicted in Fig. 1. Each agent is described by
the following state-space model:

—-110 0 0
. 010
X; = O11|x+[0|w+ |0 |W,y = X
001
000 1 1

We intend to solve the problem of H., almost synchroniza-
tion for this networked dynamical system. Clearly, each
agent, which has one input and two outputs, satisfies As-
sumption 1. Notice that the system is already represented
in the SCB with respect to both B and G, and both the
SCB are identical; each system is left-invertible, minimum
phase, and it has one infinite zero of order one. Conse-
quently, it is straightforward to verify that %, 1mg (A, G,C)
is empty. Thus, Assumption 1-(4) and (5) hold. Since InG C
Rerc(A,B,C), Assumption 1-(3) also holds. We assume
that 4 € 9 with B = 3.5. Therefore, Theorem 1 ensures
that the problem is solvable using the controller (5).

According to Fig. 1, the eigenvalues of the Laplacian of the
communication network graph are 0,7,4 + j2.2361. Taking
7 =3.5, we found Ky4 = 0.378 and K;, = 0.5469. We also
select F, =5 and Fy = 20. The protocol gains, Kops(€) and
Fcon(€), are given by

Feon(€) = %Fde

o ™ o

o=
(=%
(Y
iy
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We assume that w;(t) = i+ sin(4t + ). The result of the
simulation is shown in Fig. 2, where we have plotted § ki =
Zj}:l 8ij¥,j for k=1,2. Clearly, Ck’l- = 0 means yi; = yx, -
In Fig. 3, a comparison between € = 0.01 and € =0.03 is
presented. Reducing € results in a more accurate synchro-
nization.

Theorem 1 guarantees H., almost synchronization for suf-
ficiently small €, which amplifies Feon(€) and Kops(€). In
other words, Theorem 1 provides lower bounds for Feo,(€)
and Kgps(€). However, for practical purposes where mea-
surements are corrupted with noise, these gains should be
tuned appropriately in order to ensure synchronization by

Fig. 1. The communication topology of the network.

Ho almost synchronization, e = 0.03

.0 é‘
~10 f
—20 . . .
0 5 10 15 20
20 T
; ]/\
S 0 W
101
—20 . . .
0 5 10 15 20
Time(sec)

Fig. 2. H., almost synchronization. The upper plot shows § 1,; and
the lower plot shows &5 ;.

e=0.03 e=0.01
0.05 -/\/\_/_ 0.05
Z 0" o S
~
—0.05 ~0.05
12 14 16 18 2 12 14 16 18 20
€=003 €=001

fg
|

12 14 16 18 20 12 14 16 18 20

Time(sec) Time(sec)

Fig. 3. H., almost synchronization. A blow-up of the results for
€ =0.01 and € = 0.03. The upper plots show Cl,i and the lower
plots show {, ;.

choosing sufficiently high, and to achieve the best perfor-
mance by limiting the magnitude of the gains.

5 Conclusion

We studied the problem of synchronization for multi-agent
systems with identical linear dynamics under directional
communication structures and in the presence of external
disturbances. Utilizing the time-scale assignment technique
and the geometric control theory, we proposed a family of
dynamic protocols ensuring any accuracy of synchroniza-
tion in the sense of the H. norm of the closed-loop transfer
function from disturbance to the synchronization error.
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A Special Coordinate Basis

The protocol development relies extensively on a special
coordinate basis (SCB) — see e.g. (Saberi et al., 2012, Chapter
3) — originally proposed by Sannuti & Saberi (1987). This
section is devoted to recall the SCB of linear systems and its
pertinent properties. Consider a linear, time-invariant system
described by

Y :x = Ax+Bu, y=Cx (A.1)
where A €¢ R"*" B € R"™ and C € R?*", Also, x € R" is
the state, u € R™ is the control, and y € R? is the output.

According to (Sannuti & Saberi, 1987), for any system X
characterized by the matrix triple (A, B, C), there exist

(i) unique coordinate-free non-negative integers n, , nj s
Ny, Ne, ng, 1 <r<n,and g;, j=1,---,r.

(i) nonsingular state, output and input transformations Iy,
Iy, and I'y as x =I'\X, y =I'yy and u = I';u such that

X = col {x; ,x;,xp,Xc,xa}, ¥ =col{yg,yp}, U= col{ug,uc}

where the states x;, X, xp, Xc, X4 have dimensions n;, n;,
ny, ne, and ng, respectively. Also,
uq,yq € RM=Pd u. € R™ Yp € RPY

which implies p = pq+ pp and m = mgq + m.. Moreover, x4,
ug and yq are partitioned as

Xd = col {de} Y4 = col {yjd} uq = col{ujd}
for j=1,---,r.Here, xjq € R/ and u;q,yjq € R%. For every
je{1,---,r}, define

01, 0
G By = Cia=|1,, 0
0 0 1 s [Iqj]’ io=1,, 0]

Ajd:
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Clearly, Ajg = 0, B1g = C1q = 1, . The transformations take
¥ into the SCB described by the following set of equations:

Xy = A x, +Lgya+ Ly (A.22)
X =ATxS +Lya+ Ly (A.2b)
Xp = ApXp + Lpdyd (A.2¢)

Xe = Acxe +Leayd + Levyo +Bc(uc + E(;x; + E:;;x;r)
(A.2d)

and for each j=1,---,r, there are:

Xja = Ajaxja + Ljaya -‘rBjd(ujd +Ej§) (A.2e)

where E; € R%*" and is appropriately partitioned as
Ej: E;a E; Ejb ch Ejd:|7 Ejd: {Ej Ej ]

where Ej; € R%i*kak for k=1, - - -, r such that EX= Ej;x; +
ETxI+E ibXb + EjeXc + Ejgxq. The outputs are given by

ja*a

vja = Cjaxjd, ya = Caxq, b = CoXp (A.21)
where Cyq = diag{Cjq} for all j € {1,---,r}. One may con-
sider that L;q4 = 0. The presented SCB explicitly reveals the
system’s finite and infinite zero structures and the invertibil-
ity properties. The invariant zeros of the system X are the
eigenvalues of A and A;. We presume that the eigenvalues
of A, are located in C™ and the eigenvalues of A; are lo-
cated in C™, assuming that the system has no invariant zeros
on the imaginary axis. Thus, the system is non-minimum

phase if x; is existent.

The xjq subsystems show the infinite zero structure of the
system. Thus, X has jg; infinite zeros of order j. The sub-
systems x, and x. describe the invertibility properties of X.
The reader should refer to (Sannuti & Saberi, 1987; Saberi
et al., 2012) for details.

Clearly, (Cy,Ap) and (Cjq,Ajq) form observable pairs. In
fact, the system X is observable (detectable) if and only if
the pair (Cobs,Aobs) is observable (detectable), where

AL 0 0
Cobs = [Ed_ E&:l Edc:| ; Aobs = 0 A:r 0
B.E;, B.EJ, Ac

in which for j=1,---,r

Eg, = col {E];}, E;; = col {E;g1 . Egc=col{Ej.}
Moreover, (A¢,Bc:) and (Aj4,Bjq4) form controllable pairs.
The system X is then controllable (stabilizable) if and only

if the pair (Acon, Beon) is controllable (stabilizable), where

A; 0 L;DCb L:;i
Acon = 0 A;r L;E,Cb Bcon = L;;i
0 0 A Lo

The geometric subspaces can be expressed in terms of ap-
propriate unions of subspaces that describe the SCB of .
According to (Ozcetin et al., 1992), we have the following
property which establishes a connection between the SCB
and the geometric subspaces.

Property 1 Suppose the state space is described by x; ©
x;" D Xp D xc D xg.

® x, ®xcDxq spans ’Vb,KerC;
o x ®xc spans S mB-

B Proof: Theorem 1

Estimation Error Dynamics for Agent ‘i’: We start the proof
by finding the estimation error dynamics for agent i € G.
Define the estimation error as X; = x; — X;, and find the dy-
namics according to (1) and (5). It gives rise to

fiiZAii+GWi—Kobs(3)(Ci_ai) (B.D)

where §; —§, = Z’}’:lgijCij and Kgps(€), which is given
by (18), is found using the coordinates corresponding to the
SCB with respect to the triple (A,G,C). Thus, using the
transformation matrices found in Step 5 (see Eq. (12)), we
transform (B.1) into that SCB. Let

_ _ Vd.i _ Wq.i
X =Ix%, Cx=Iy lm,;} Wi_rw[ d’l]

Yo,i We,i

where % = col{X, &, %%, Xa;} in which %4; =
col{i_jd’,-}, Ya,i = col{Jja;}, and wq; = col{wjq;} for all
j€eQ={l,---,7}. The dimensions conform with Ap-
pendix A, but we place bars on the variables; for example,
%ja; € R/ and wjq;, ¥4, € RY/. It is observed that

P N ~
Ciai =Y QikTjdk

P N ~
Cb,i = Zj:l 8ijYb.j»

and é:dt,- = col{Z:fjd.,-} for j € Q. Then, in view of the SCB
given by (13) along with (16) and (17), one can write

X = A E + LogVai+ Ly,
i:z = AS &5+ LFai+ LS — Ky GiRaeCas

a ra,

Xp,i = Av¥b,i + Loa¥a,i — Ko b,
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e =AcXe i+ LeaFa; + LevFo,

+G. (WC,i + Ec_aid_z + Ec—;i:,z) - KchTKde Cd,i
—KjaeCjai
Vijai = Cja%Xjai, Vai=CaXai, Ibi = CoFp,

Xjai = AjaXjai+Ljavai+Gja(wjai+Ej%)

The structure of matrices follows from the SCB, explained
in Appendix A. For j € Q, define

E,, = stack {E ) Eab = stack{Ejp }, Laqg = stack {Ljq}

_ LT _ L _ 0
st = _ab 5 Lsd = _ad P Gs = _
ch Lcd Gc
Define %5; = col {xal i+%c,i}, and
Zoi = Fsi— KeaGl%a, (B.2)

where Gq = diag{G jq} for j € Q. In view of Step 6, one may
find Zs = ASsz i+ Esax .+ Esbxb i+ Esdxd i+ GSBW, where
be = [_st7 G }F\;l and
Eg = GiEg, — KuEg,, Eg, = Ly,Cy — KsaEap
Eqq = AyKGy + LygCy — KsaG) LaaCq — KsaEua

Recalling the scaling matrix S; i, in (15), we define
S = diag{S;} for all j € Q. Considering the matrix Egy,
one may demonstrate that £E dS‘ = eRe, indicating
that ||€Egqe| = O(€). To show that, we partition Egq as
Eq=IEq,Eq, - Eg] where Ey € R +7e) <kdk for every
k € Q; therefore, it is obtained

SFESd§_1 =g E_'S]SII . ESFS;I
Since ||£'EskS 1 = o(e'g, k= 1)) = O(&), one may
write E'ESkSk = gk, for some appropriate Eg, which

is uniformly bounded for all & € (0,1]. Therefore,

IEsd.s [ESIS; ESZSa e Esrg}

Denote Ej’fd = E;sK4G] + E 4. Then, for every j € Q, one
may show that

( Y qucd +€FG_jdE_jd)§7l = EEjdg
for some Ejqe which is uniformly bounded for all € € (0,1],
and ‘|8Ejdg|| = ﬁ’(e) Note that ||§j§jl:jdcdsil || = ﬁ(éj)

Consider the following state transformations

Zsei = € Zsiy Xjde,i = SjXja,i (B.3)
and define %4e; = col{¥jqe,;} for all j € Q. Let Ejs =
[E}. ,Ejc]. Consequently, the dynamics of the observation

Jjao

error system are given by:

X = Ay X+ LgCafae i+ L. (B.4a)
X = ApFo,i + LoaCaae i — Kolo.i (B.4b)
Zse.i nggzgg,Jrs E;“a‘lJre beb,

+ eEsdsxdg), + € Gw; (B.4¢)

SZgei = AgaTae i + € Bagefae i + € By X + € Eap Ty
+ EasZse.i + € Gaawi — KaaCai (B.4d)
where we have used the following notations, for all j € Q,
Add = diag{Ajd}
Eg, = GaEy,
I_Eds = G_d stack {Ejs}
S = diag{éjquj}

]Eddg = stack {E_jdg}
Egb = GaEap

Gaa = [Gq, O,
Kqq = diag{Kjq}
Note that fdJ- = ):sz1 gikédfde,b

Dynamics of Agent ‘i’ under Feedback: We obtain the dy-
namics of agent i, (1), under the feedback (5b). Clearly,
= —Fcon(€)X; = —Fcon(€)(x; — X;). Indeed, we obtain

X; = (A — BFCOH(S))Xi + BFCOH(&')X,' + Gw;

= (A —BFn(€))x; + BTy

9‘1 1
I, % +Gw;
Fe

The state-feedback gain Feon(€) is calculated using the co-
ordinates corresponding to the SCB with respect to the triple
(A,B,C). Therefore, it makes sense to transform the equa-
tions into that coordinate. In Step 1, using (6), we found (7).
Thus, we intend to express u¢; and ug; in terms of the coor-
dinates corresponding to the SCB with respect to the triple
(A,B,C), and apply them to system equations (7).

Representing X; in terms of the coordinates of the SCB
with respect to the trlple (A,B C) one may obtain X; =
[WX; where X; = col{xal, :l,xb,,xc”xd,} in which xd, =

col {Xjq;}, Vj € Q={1,---,r}, where £;q; € R/. It clar-
ifies that there exists a relation between estimation errors
expressed in these two SCB, which is given by X; = I'y ' Tx#;.

That is, the components of one can be expressed as a linear
combination of the other’s components. According to Prop-
erty 1, one can show

hd )%;,i @)%c,i @fd,i spans ¥, xerc(A,B,C);
o % @i spans S mG(A,G,C).

In accordance with Assumptions 1-(4),(5), we obtain

(XL' EBic,i) - (xx;, @xxc,i @xxd,i)v
(%, ®%ei) CKerC
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The computation of the orthogonal complements of the
above sub-spaces results in

(xxj_l @fb,,‘) C (55;1 @ Xp,i EB)"C'(L,'),

(KerC)* c (%, DX, D Xai)

It is observed that Cjg¥q; = ¥j14; € (KerC)* for all j € Q.

Therefore, for all j € Q and every i € G, one concludes that

e Assumptions 1-(4),(5) imply that )?j]d,i, )?:i and fb_’i are

expressed in terms of & ;, &, ; and %g ;.

e Assumption 1-(3) implies that G = Gy, = 0 since InG
is spanned by x, ;, xc;, and xq ;.

ai’

Partition F," and F, such that F," = stack {F ;} and K, =
stack {Fj} for all j € Q, where Fj; € R 1 and Fj, €
R%*™ . Define Fjs = [Fj‘;, Fjp); thus, Fy = stack { Fjs } for all
J € Q. Denote x5; = col {x;;, xp.; }.

Define Sjdi = FjsXs,i +yjd,i and Zjd,i = }ﬂdFjsxs’,' +)de7i. Let
sd,; = col{sjq;} and zq; = col {zjq,} for all j € Q. It implies
that s;q4; = Cjazjq; and sq; = FsXs; +ya,;. According to (8),
Xsi = AssXs i + Lsasq ;. In light of the geometric assumptions
and the state-feedback gain (11), we obtain

(B.5a)
(B.5b)

Uei= —F; (xc,i _ic,i)
ujdi = —Ejxi — FjaeZja,i +ujii+ujp,
~ _ —_ X + X+ X X X
where Ujli = Ejaxa,i + Ejaxa,i + Ejpxp,; + EjcXei + EjaXed,i

~ T o+ 3+ T % %
and ujp; = Fjdg(deFjaan + deFjbbe +de7,'). From the
assumptions on the geometric subspaces, it follows that
B F.X.; is a linear combination of the components of X;; i.e.

Bchfc,i = M;lf;i “V‘Mcbib,i + Mcszs,i +Mcdfd,i

where Z; is defined in (B.2), and Mg, My, Mcs, and Mg
are some constant matrices independent of €. In view of the
scalings (B.3), B.FeXc; is modified to

Bch)%c,i = Mc;f;i +MepXp,i + giFMcsZss,i + 87(F71)]ch£)zd.s,i
where we have used the fact that MegS—! = £ DM g,
where Mgqe is uniformly bounded for all € € (0,1] since
[MeaS~'|| = ©(e~ D). Likewise, there exist some con-
stant matrices M;a, Mj,, Mjs, and Mjq for j € Q that
M jd§*1 = & VUM ;4e, where Mjq, is uniformly bounded
for all € € (0,1], such that

~ o - _z - (-1 -
Bjaujii =M%, i+ Mo+ € "MjsZse i + € F DM gege i

We also need to express Bjqilj>,; in terms of X; to be able
to close the loop around agent i. For every j € Q, partition

Fjqo = [Fjia, -+, Fjja] where Fjq € RU*% for k=1,--- .
Then, one can show that Bjqu > ; is equal to

_j Trt3t | Tp % —J ¥
€ ]Bdejd (deF X <+deFjbxb,,»>+£ ijdFjldled,i

ja'va,i
—j J k—1%
+€ ijd ZkzszkdE Xjkd,i (B.6)

in which we have used the fact that xxjd.,- = col{fjde},
)?jkdﬂ' € RY%, for all k= 1,---,j and every j € Q. Ac-
cording to Assumptions 1-(4),(5), the first line of (B.6)

depends only on %, ;, &,; and %4;. Therefore, there exist

a,i®
some constant matrices Nfa, Nj, and Njq for each j € Q,

independent of € such that the first line of (B.6) is de-

scritled by e/ (N oo + Njpib i + e "=V Njqe%de,;) where
NjgS™' = e~ VNjq4e, where Njge is uniformly bounded

for all € € (0,1]. Similarly, xtjkd_’,' fork=2,---,jand j € Q
can be expressed as a linear combination of components of
Xi. Thus, we get

J k—1% _ N Y Yo
Bja )y Fira€ ™ Tjxai = €Yy, €72 (M + Mo,

CEvr - e
+ £ erksng,i-l-S (7 >Mjkexds,i)

It is straightforward to verify that M jke» k=2,---,j and
J € Q, is uniformly bounded for all € € (0, 1]. Denoting

o N ok—277. N k—2p7.
M]d_ Zkzze Mjk£7 M]S - ZkZZE Mjks
— N\ k=2 27— YO w k=227
M;, = Zk:2 € Mjka’ Mjp = Zk:z € "My

which are all uniformly bounded in &. Thus, it turns

out that Bjq Zi:Z ijd&‘kfl)%jde = SMJ;X;Z- + EM Xy +
8’<"1)Mj52557,- + 8’(r’2>de)Zd£’,'. Now, we are ready to find
the closed-loop equations. Considering (9), we introduce
the state transformations:

ag,i = €Xy, Zjdei = Sjzjai  (B.7)

X a,i’

Xee,i = EXciy

Denote zge,; = col{zjqe,;} Vj € Q. In light of Step 2, one
may demonstrate the dynamics of the systems as

Xpe i = A;x;sj +&Lyxs i + €L Cazge,i + G, W;
Xs i = AgsXs i + LsaCaZde,i
Xeei = AccXee,i + BCEC;X;SJ + EEcsxs i + ELcaCyzde i
+eGew; + eMc‘a)Z; ; T+ EMp X, ;
+ Si(Fil) (Mcszss,i + 8]chefde,i)
€Z4e,i = AddZde,i T €Ladzde i + ELasXs i + EGaqWi
+EMg %y + EManTo + & T MyZie i
+ 87<F72>Mddfde,i +e (™ 1)1\’[1(1)?(1.5,1‘
+ Ny, Xy i + NavXo,i
where Ly = —L F+ [0, L, Gy and Ec =
[B.E+

ca’

_Lchs+
LpCp). Also, for j € Q, we have defined
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Lj'd = C}dF}sLsd +Ljd7 Ljs = C;rdF}'sAss _Ldes, and

Gyqq = stack{ngjd}
Lg4s = stack {51'Ljs}

Aga = diag{A7q}

Lag = stack {$ iLja}Ca

Mg, = stack {e/~'M;, +M;,}

My, = stack{sj_leb +Mjb}
Mg, = stack {&/" "M s+ M}

Maq = stack {€/ "' Mg + M q}

N, = stack {N]_a}
Nap = stack {ij}
Ngq = stack {deg}

Closed-loop Equations for Agent i - Compact Form: Define

Z, = COl {xcg7i,xs7i7-x;‘g’[7 Zde.l}
of = diag{Acc,Ass, Ay sAdd}
7 = diag{L,,1,el}

Z; = col{X, ;, ¥ i, %de i» Zsei}»
o = diag{A; ,Ap,Agq,Ass },
j:diag{lalag7l}7

Now, the closed-loop equations are recast as

(B.8a)
(B.8b)

SLi1=Ht;+ L1, +EEW+DE;
jii:Jf_ii-i-jii-FSF(?Wi—Ziv:lgik.@ik

where £ = %, +.%, |eLe|| = O(€) and F = €% + L,
leZe|| = O(g); also Z = Pe + e 1. The norms of
£, L0, Do, 9, &, and & are uniformly bounded for all €.

[0 Ees 0 LgCy 00BE, 0 |
000 0 00 0 LyC,
,,% _ B ’ jo _ sdd
0Ly 0 LyCy 00 0 0
0Ly 0 Lag 00 0 0
[0 0 0 0 [0 ]
_ 0 0 0 0 _ 0
D%S = - . - — — 9 g = -
e 1E;, € 'Eqp Eqqe 0 Gad
8F71Es?1 z"«‘FilE_‘sb ]Esds 0 G_SS
0 i‘z;)Cb l_‘z;jéd 0 G.
o 0 LG 0 0
fo _ bd\“d A , éa _
0 0 0 [y G;
00 0 0 Gud
(0 0 0 o0 00 0 M|
_ |lo&kG o0 o 00 0 0
9 _ bLb ) ) : 90 _
0 0 Kgly0 00 0 0
00 0 0 00 Ngg My,

eM_, eMyy, € T DMy 0
0 0 0 0

.@g =
0 0 0 0

eEMy, + Ny, €Mgy + Nap £7<F72)Mdd 0

Closed-loop Equations for the Multi-agent System: Collect
the states as y = col{z;}, ¥ = col{%;} for all i € &. Then,
the collective dynamics are described by

(INn@A)x=Iyd)x+(Iy L)

+e(Iv@E)w+(In®@ 2)X (B.9a)
v )x=(Ived)—(Go2)) 1
+ (IR )f+e(Iy2&)w  (B.9b)

Recall yq; = col{yjq,;} for all j € Q and every agent i € &.
Thus, we obtain y;q; = Cjazjde,i — FjsXs,;- In addition, yy ; =
[0, Cplxs,;- It implies there exists a matrix Iy, independent
of €, such that y; = Fyl";zi. Therefore, in view of (2), { =
(GIyIy)x.

Let 1,1, € R¥: G1 =0 and 1]G = 0. Suppose the Jordan
form of G is obtained using the matrix U which is cho-
senas U = [U, 1] = (U )T = [0, 1,]. Thus, one can find
the Jordan form as U~ 'GU = diag{A,0}. It implies that
GU =[G, 0] where G = UA. We introduce the following
state transformations

e

eo
where eg, 29 € R". Denote N = N — 1. Then, we find two
sets of equations. The first set is given as bellow.

— (U 'elL)z, [

€0

=W '®L)x (B.10)

Iy )= Iy (o +24))e+e(ly® Le)e
+e TV (e (E 2+ ) e

+e(Uf @ &)w (B.11a)
Iy L)e=(Iy®(d+ L) —-A®D)e
+e(ly®.Z)e+€ (U @&)w  (B.11b)

and ¢ = (G ®@IyI§)e. The state (eo,&) determines the
agreement trajectories when § = 0.

H,, Analysis: Consider the reduced-order system (B.11) with

the controlled output {. Choose p > 0 such that {T¢ <
pZeTe for all € € (0,1].

The matrix o/ is Hurwitz stable because A , Ags, Acc, and
Ajfd, Vj € Q, are Hurwitz stable. Due to the upper block-
triangular structure of %) where the blocks along the diag-
onal are zero, the matrix (Iy ® (& +.%))) is upper block-
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triangular and Hurwitz stable. Therefore, there exists a sym-

metric 2 > (p? 4 4)I, such that the Lyapunov equation:
(JZ{-F.,?())T,@—F P(A+ L) =—-2

has a unique positive definite and symmetric solution &

which is block-diagonal with the block sizes that correspond

to the block sizes in .. It guarantees that &2 and .¥ com-

mute. Choose V, = e (I ®.7 Z)e, and differentiate it along
the trajectories of (B.11a); it gives rise to

. T
Ve<—¢'¢-3e IIZ—
+2e (=

(1—2¢pe) el
Y ptaele]l[12]] + 2t el

where fle > maxee(o,1) | PZe |, tw > |(U) @ 2&)||, and
Hae > Maxee (o 1)|| 2 (€7 Ze + Z)|. Since pe is bounded,
there exists a sufficiently small & € (0,1] such that 1 —

2eue > 0 for every € € (0, &1]. Therefore,
Vo< —¢Te—3le|? +2¢ 1 2l +2
e <=0 C—3le]|"+2¢ Hae|lel[[[2]| +2€ | e]][[w]]

In (B.11b), let & = ((Iy® (o + %) — (A® Z)). From
the structure of A, it is observed that <7* is upper block-
triangular. Thus, /* is Hurwitz stable iff all matrices on the
main diagonal are Hurwitz stable. In other words, &7 +.% —
A2 must be Hurwitz stable for all A’s which are nonzero
eigenvalues of the Laplacian matrix G. Notice that since
9 €9, Re(A) > B >0if L #0. Since o/ —A 7 is a block-
diagonal matrix and % is upper block-triangular where the
blocks along the diagonal are zero, the eigenvalues of o7 are
determined by the eigenvalues of A, , Ags, App = Ap — AKpCp,
and Ajd = Ajd — }ijdc_jd.

A, is Hurwitz stable by definition, and As; was made Hur-
witz stable in Step 6. According to Step 6, it can be con-
firmed that Ay, and A jds Vj€ Q, are Hurwitz stable. To see

that we recall K, = PbCT and § > t; therefore, we can show

ApP, + BAY = AP, + PAL —2Re(L)R,Ch Co By
= AP, + B A} —2tR,CICy P,
~2(Re(A) ~ DACIGA < 1

Itfollows that Ay, is Hurwitz stable. Similarly, it is confirmed
that A;fd’s are Hurwitz stable. Hence, &/ + % — 4,2 and

o/ * are Hurwitz stable for every nonzero A;. Accordingly,
for A;,i=1,--- ,N—1, there exists a symmetric Q; > 0 such
that the Lyapunov equation

(.Q/_-f-jo - XIQ)HP +15,‘(527_+j0 - /1192) = —Qi
has a unique solution P; = f’l-T > 0 which is block-diagonal

with the block sizes that correspond to the block sizes in .57
Let §; > 0 be such that §;I1 < Q;, and fj; = ||P;Z||. Following

12

the proof of Proposition 1 in (Peymani et al., 2014), we can
show that the block diagonal matrix &? constructed as

P = diag{8,Py,---,0v_1Py_1} (B.12)

where Sy = 1 and §; = &;41G;d;1 /977 fori=1,--- ,N—2
(implying || Z|| is bounded for any B > 0) solves the Lya-
punov function (&7* )P 4 P .o7* = — 9 for some symmet-
ric 2 > (3+ p2.)lg,. Considering that & and (Iy ® )
commute, we choose V,, = &" (Iy ®.7) Z¢, and take deriva-
tive

Vo < —(24 g, )12 ]]* — (1 —2epe) [2]|* +2¢€ w2 || wl]

where fe > maxee(o,)| P (Iy @ Z)|| and pw > | P (Uf @
&)||. Because & is bounded for all 8 > 0 (i.e. for all network
graphs & € ¢¥p), P and Py, are bounded for all § > 0. Ac-
cordingly, there exists an &, € (0, 1] such that 1 —2gpe >0
for every € € (0, &x); thus, for every € € (0, €], we obtain

Vo < =2+ nge)l12ll* +2e"pw 2]l |Iwl

Choose V =V, + 8’2(F*1)V0. Let gf = min{¢&,&n}. For
every € € (0,€&]], an upper bound on V is given by

V< =CTE =3l + 26~ pugelle e
+ 21 v
e 2 D@ i) o]+ 26
e
#2e(inlel & Dpulel) v

— llell* + 26~ D page [l 2] — &>V uge|J2]

Dpwlelllwl

The third line is equal to —(||e]| — £~ pge||2])? < 0. De-
note Gy, = v/2max{ iy, Py }. Then, one may write

V< =T =2l —2e Ve

+2€€7w\/IIeH2Jr«?‘z(F‘”Héll2 [l

where we have used the fact that |[x|| + [|y|| < v2y/x2 +y2.
Completing the square results in

V<=L el — e Vel + (eow)llwll?

Hence, from the Kalman-Yakubovich-Popov Lemma, it fol-
lows that ||T,,¢ |- < €0y. We need to show that the impact
of w on every mutual dlsagreement ¢;j can be made arbi-

trarily small. We define ¢; ; = Twe( w, i,j €S,i>j.

From (Peymani et al., 201 4, Lemma 3), it follows that there
exists 6 > 0 such that ||T;,{ || < €6. Therefore, for any given
¥ > 0, there exists an & € (0, &/] such that every € € (0, &;]
yields || T[] < 7.
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